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FORWARD

The research results contained in this technical report were performed under the

NASA grant NAG-l-1684 entitled "Experimental and Numerical Structural Acoustic

Control for Interior Noise Reduction". The report is based essentially on partial progress

of the Ph. D. dissertation prepared by Jeffrey S. Bevan under direct guidance of Dr. Chuh

Mei. The document presents a finite element formulation and control of sound radiated

from cylindrical panels embedded with piezoceramic actuators. The extended MIN6

shallow shell element is fully electrical-structural coupled. A piezoelectric modal

actuator participation (PMAP) is defined which indicates the actuator performance to

each of the offending modes. Genetic algorithm is also employed to validate the sensor

and actuator locations determined by the PMAP criteria. The work was conducted at the

Department of Aerospace Engineering, Old Dominion University. Mr. Travis L. Turner,

Structural Acoustics Branch, NASA Langley Research Center is the technical monitor.

The research is continued under the new grant NAG-1-2141.
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1. Shallow Shell Finite Element Formulation

The three-node shallow shell element presented is an extension of the MIN6 developed

by Tessler I. A brief description of the element attributes includes 3-node shallow curved

shell triangle with fifteen nodal degrees-of-freedom (dof). The element employs C°

anisoparametric interpolation to account for both membrane and transverse nodal

displacement. The membrane and transverse displacement each utilize unique

interpolation polynomials, which offer distinctly different polynomial degrees as

introduced by Tessler 2. The transverse displacement employs a complete quadratic

polynomial, while the bending rotations utilizes a linear interpolation scheme. The MIN6

formulation consists of a Marguerre shallow shell membrane strain consistent with the

Reissner-Mindlin theory which includes transverse shear effects. Static condensation

eliminates the extra nodes required to facilitate the complete quadratic polynomials while

maintaining the minimum specified number of nodal dof. By formulating a co-rotational

highly nonlinear solution, Barut 3 et al exhibits the versatility of the MIN6 shallow shell

element. This research further expands the MIN6 capability by including anisotropic

piezoceramic materials in conjunction with unsymetric laminated composite resulting in a

fully electrical-structural coupled shallow shell finite element formulation.

2. Element Displacement Functions

Displacement field components ux, uy, and u,,, consistent with Mindlin theory, are

described as

zt._= u(x,y,t) + gOv(x,y,t )

zt_ = v(x,y,t) + _0_ (x,y,t) (2.1)

u,, = w(x,y,t)





where u, v, w represent the mid-surface membrane and transverse displacements; bending

rotations of the normal about the x and y axes are given by Ox and Oy respectively. The

element coordinate system is defined as positive x along the side between nodes 1-2 as

shown in Figure 1. The arbitrary shallow shell shape is described by ho(ir,y) and related

to the z-axis as

_ = z-h,(x,y)

w,z

y,v

×, 1.1

2

Figure 1 MIN6 Geometric description





Thus, the nodal displacement vectors can be written as

{w}"={Lw_JL°J L_,,,JL"_J} (2.2)

{w_}'--Lw,_+'2 w3J (2.3)

{oY=Lo,,0,: 0,_0_,0,__o_j (2.4)

where each electrical dof is the coupled, total electric potential of each piezoceramic

layer. For example, consider np layers of piezoceramic material the electric potential dof

is given by

{w,I"=L_,... _,,,J (2_)

Considering the inherent electrical-mechanical coupling of piezoceramics, the electrical

potential dof includes both self-generated, or sensor voltage, and externally applied, or

actuation voltage. The coupled piezoelectric constitutive relation is described in Sect. 4.

The displacement field throughout the element is determined by interpolating the

nodal displacement as

,,,(x, y,t)= LH_ J{_ } + LH,,,o j{O}

o,.(x,,.,,)=Ln_,J{o}=L_,_.___, o o oj{o}

o._,(x,y,,)=LH_,J{o}:Loo o _, _2 e_oJ{o)

,,(x,y,,)=LH,,J{,%}=L_,_,_#_o o oJ

,_(x,y,,)=Ls-s,,j{,%}=Loo o _, __ _J

(2.7)

(2.8)

(2.9)

(2.1o)

(2.11)





Natural coordinates commonly used to describe triangles refer

ratios. These area or natural coordinates _1,_2,_3 are

coordinates by utilizing the following transformation relations

= Xl X2 X2 _2

Yl Y_, Y3 3

related to

{;it .' x2y3x3 2Z+ = -9---AI X3Yl - XlY3

[_xly 2 - x2y I

x3-x21[,1
x, (

Yl - Y2 X2 -"q _][YJ

where (x,, y_) designate the ith nodal coordinate, and the triangular area A is given by

A =l ((x__ - xiXy3 - Yi)-(x3 - xiXY2 - yi)).

follows

L3 =l(b32N6-biN5) A41 =l(a2N6-a3N4)

_f2 =l(a3N4-alNs) M3 =l(aiNs-a2N6)

N_= 4_,_,_ X_ = 4_ N_= 4_S,

a l = X32 a2 = Xl3 a3 = X21

bs = Ys: b.., = Yss b3 = Y21

xij = x, - xj y,j = y, - yj

simply to area

the geometric

(2.12)

The interpolation functions are defined as

(2.13)

Integration of polynomials expressed in area coordinates can be accomplished with the

following formula

k!l!m!

I_k £,_,,,c/A = 2A (2 + k +l + m_. (2.14)
A
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Geometric matrices describing the strain interpolation functions are given by the

following definitions.

(2.15)

LH__k.v =--X32 X,3 X21 0 0

i • +J . 2A:H_,_k,LH_,jy LY23 Y3, Y,2 X3z x,3 x2,

(2.16)

LLH_I.,2ALY23 Y_, Y,2
(2.17)

2H_oA,,,+LH.]I
[c_o]=LH,,.oL+LH._,A] (2.18)

3. Strain-Displacement Relations

Tessler I first developed the shallow shell element utilized by combining both

Reissner-Mindlin and Marguerre theories. The Marguerre theory enforces the Kirchhoff

assumption thereby neglecting shear deformation in contrast to Reissner-Mindlin theory.

Substituting the normal bending rotations for the overall slope in the Reissner-Mindlin

theory yields the following Marguerre inplane strain compatible to Reissner-Mindlin

go } t.....,v v,_ h,,,_Ov+h ....¢

(3.1)

The following curvature and shear strain completes the strain relations

0v, x ){_}=i o,,,
[Oy,_ +0 .....

(3.2)





LY.,-- Lw,.,j 8
(3.3)

4. Constitutive Relations

The k 'h layer of the laminate specifies either structural or piezoceramic properties and

is characterized by the following coupled constitutive relations

{or }, = [0_ ({_'} -E3k {d}, ) (4.1)

{z')= [Q, _ {7} (4.2)

D3k = {d};' [_)], ({_"}-E3, {d}, ) + _kE3k (4.3)

1
0

hi

{E3}=-IBo]{w,}=- " "'. " V1 ... V,,pJ (4.4)

1
0

h,,p

Eq. (4.3) defines D3, the /(h layer electric displacement density resulting from two

components, namely strain and the total electric field Esk, which are coupled through the

piezoelectric d coefficients. The piezoceramic layer is polarized in the 3-direction and

anisotropic in the 1-2 and 1-3 material directions. Furthermore, each piezoceramic layer

may have an arbitrary orientation angle. The lamina reduced stiffness components are

determined from the principal material properties as

Qll - E1 QI2 - vl2E2 Q22 - E_,
1 - VI2V21 1-- V12V,_I 1 -- V12V21 (4.5)

QC,6= G,2 Qu = G23 Qs5 = Gi2

The ability to accurately model piezoceramic anisotropy supports current research

trends in advanced transducer development. If anisotropic piezoceramic material is used





the tbllowing transformationrelatesthe principal coordinatechargecoefficients to the

globalcoordinates

d,iI= sin'-_ cos2,_d i. 2coscrsin a - 2cosc_sina

-cosc_sina l_d3_ ]

_os_,,,_M_t3:
cos_-_-si,,:_Jlo J

5. Force and Moment Resultant

(4.6)

Analysis of laminated composite plates maintains distinct lamina stress, therefore

utilizing stress resultants is imperative.

unit length are defined as

N},{M , ,{o}(1,_-/_

4!_fr_.-}f 5

Utilizing Eq.(5.1) it is useful to define the stress resultants as follows

The stress resultants, or force and moment per

(5.1)

(5.2)

(5.3)

where the extension, extension-bending, and bending stiffness matrices are defined as

k=l k

+ E_ol( /[] -,B : zL, -z]'-

[_]=_21-__J(z-:+,__-:)
D k=l k

tl

[A,.]:2[_a,](_.,-_--,)
k=l

(5.4)

(5.5)

(5.6)

(5.7)

Considering the /(h piezoceramic layer and the coupled constitutive relations the

piezoceramic force and moment vectors are given by





i/

6. Equations of Motion

Finite element equations of motion for the laminated composite panel with fully

coupled electrical-structural properties are derived utilizing the generalized Hamilton's

principle 4 to obtain

_"6(T-U+W-W,,, + W)dt = 0 (6.1)

where T and U are the kinetic energy and strain energy of the system, W_ is the electrical

energy, W,,, is the magnetic energy, and W is the work done due to external forces and

applied electric field. The magnetic energy is negligible for piezoceramic materials if no

external magnetic fields are located near the specimen. The kinetic energy of the shallow

shell element is defined as

ta-

where _i_, z_, and _ are the transverse and membrane velocity components and p is the

mass per unit volume, and - is the volume of the element. The potential and electrical

energy are defined as

v: (6.3)
lz--

IV = II {E}T {D}dV (6.4)

and the work done on the element by external sources is defined as

W: I{w}r{Fh}d_+ I{w}r {F_}dS + {w}r {F_} - IVp_dS (6.5)
I-: S I S,





where {F/, } is the body force vector, {F,} is the surface traction vector, {F} is the

concentrated loading vector, S_ is the surface area of the applied traction, S 2 is the surface

area of the piezoelectric material, V is the voltage applied to the piezoceramic layer, and

Pc.,. is the total electrical charge due to self-generated piezoelectricity and applied

actuation voltage. In Hamilton's principle, all variations must vanish at the time t = t,

and t = t2. The Hamilton's variational statement may be written in the most general form

as

I[p({_<{;_}+{_/T{_}+{_},{_})
v

-{a_}'{o-}+{ae}'{D}+{_}'{F_}}_¢
+f{sw}T{z_s- fo_p.ss+{8_}' {F_}--0 (6.6)

$1 $2

Evaluation of Eq. (6.6) leads to the development of the finite element matrices and the

elemental equations of motion. Employing the stress resultants, the variational potential

and electrical energy may be described as

A

where the shear correction factor for the MIN6 element is defined as

1

cr = 1,; (6.8)

The finite element equations can be determined by completing the variational work

shallow shell slope matrix in the following form

0h'o" h,, v

[0" ] = Lh,,," <,:,

(6.9)

statement in terms of the nodal values. Furthermore, it is convenient to specify the





whereho=ho(x,y) and is the constant shallow shell geometry.

written in nodal components, Eq. (5.5) as follows

= [A][C,, ]{%, }-[ A][O,,]{O}+ [B][Ch ]{O}-{ N_ }

The stress resultants are

(6.10)

{MI--[8]{_'}+[z_]{_1-{M,}
--[81[c,,,]{_,,,}-[8][00]{o}+[D][q]{0}-{M,}

(6.ll)

{R}= [,4, ][C_ ]{w_ }+ [A, ][Cro J{0} (6.12)

Variation of the electrical energy requires attention due to z dependence

_-h/2
A

k=l Zk

(6.13)

Completing the integration with respect to z yields

_.., [(SE,.){_}:[O]h, }+(5¢,){_},[0],{_}T(_-,+.+_-_)

-(_E_,) {d}_ [0], {d}, E3,h k +(SE3k)6_s'_,E3, hk]]da

(6.14)

Before continuing, we can further expand the definitions of the piezoelectric force and

moment vectors. The force vector may be expressed as

(6.15)

Similarly, the piezoelectric moment vector can be expressed as

10





where

I1 - 1 -[P,,]=2[_O],{d},h,(%_+S)... _s-Eo],{J},h,(-,__,+zS)...

_s-[_'],,,,{d},,,,u,,(_,,,,,+_,,,)

Eq.(6.14) can be recast in matrix form using the above definitions as

.4

where

(6.17)

(6.18)

l{d}:[_],{d}, ... o[z]: " {d};[_G{_}, d' "o -.- { },,,,[_1,,{d},,,
(6.19)

Thus, the expansion of the variational potential and electrical energy can be achieved

by substituting the aforementioned relations as follows

=
A

+{8o}'[c,]"([B][c,,,]{w,,,}-[8][o,,]{o}+[_][q]{o}-{M,})

+{,_wo}"[,_o]"[[p_]"It,,]{w,,,}+[p,,]"[o,,]{o}+[e,,]"[q]{o}

(E]+ ¢i -

(6.20)

Expanding Eq.(6.20) term by term yields expressions leading to the element stiffness

matrices

11





: f.{{_,,,,,,}"[c,,,"_][ ][c,,,]{w,,,}
.4

- {Sw,,, if[C,. ]r [AIO, ]{0}

+{8,,_,,,}It,,,]"[Hc_]{o}

+{,_,_',,,}k,,,]"[p,,I8_]{*,}

- {_o}"[o,,]"[AIc,,,]{w,,,}

+ (_o}_[O,,_[AIoo](O}

- (8o}'[o,,]"[Hc_](o}

+_,_o}"[o,,]"[e_lIB,](.+}
+{8o}'[c,]"[sic,,,]{.,,,}

- {8o}"[c, ]"[BIo,,]{o}

+{5o}'khl'[_Ich]{o}

+,_{,_.,}"It,,]"p.,It,,]{w,}
+_{,_w_}"[c,_]'p,l<_o]{o}

+_{,_o}'L ]"[.4,]k_o]{o}
- {,_w,}"[8o]"[e_1"k,,,]{w,,,}

- {,_wo}"[B,]"[P_]"h ]{o}
- {,_w,},[8,],[P,,],it,1{o}

+{,_.,},[,_°],¢; ]-_D{,_,}}_A
Completing the generalized Hamilton's principle considering nodal

(6.21)

(6.22)

(6.___)

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)

(6.37)

(6.38)

(6.39)

(6.40)

degrees-of-

freedom yields inertia, external mechanical loading and piezoceramic actuation quantities

12





_,K.,.,_.,,,,,,--f{({8_}"{<..}+{5o}"{H,.o})(p(x,y,,)-p(LH,..J{f#_}+Lz-z,.oJ{_}))
A

-p{aw,,.}"({H,,ILB..Jp,,,}-{H.,ILB.,J{_,,.I)}dA-j'{a.,,}"{pc._}dA
5'p

(6.41)

Finite element stiffness matrices result from examination of the potential and electrical

energies of the variational work statement. Each stiffness matrix, including fully coupled

electrical-structural and geometrical shallow shell stiffness' is defined from the indicated

term of Eqs.(6.21)-(6.41)

{dO}r[ko]{O} where [ke]= _C,]"[DIC_]dA
A

(6.42)

{80 }T[ko,, ]{W,,,} where [k_.]: jtc_]'[8Ic,,,]eA
,4

(6.43)

{dw,,,][k,,,o]{O } where [k,,,o]= ]Ic,,,]'[elcht_A (6.44)
A

{6w,,, }r [k,,, ]{w,,, } where [k,,,]= J_C,,,I"[AIC,,,]_A
.4

(6.45)

{Sw,,,}[k,,,,J{w# } where [k,,,_]= _[C,,,IPNIBc,]dA (6.46)
A

{&% }r [k#,, ]" {w,,, } where [k#,,]= _[B_]r[P,,,]r[C,,,]dA (6.47)

geometric stiffness due to shallow shell geometry

{cYw,,,}r [k,,,o ],, {O} where [k,,,O]o = .[[C,,, ]r [A IO,, }tA
.4

(6.48)

{60}r[ke,,],,{w,,,} where [ka,,1 ' = f[o,,]'[dc,,,]_a
A

(6.49)

{60}r[ko l, {O} where [ko ],, = I(Ieol"[AIO,,]-[O,,]"[SIc_]-[C_]"[8Io,,I}tA
,4

(6.50)

13





_}' [_1{_v_}where[_ol,--flo,,l'I_,_ot,._ (6.51)

1' p 1"{dw¢}r[k_oL[O,,]{O} where [k_ol, = I[B¢] [ x] [O,,}YA
:|

(6.52)

stiffness due to shear effects

a{do}r[k,. ]{O} where [k,,,]= y[crolr[A (Cyo_lA
A

(6.53)

a{60}r[k,.o]{wh} where [k,_]= _Cro]r[A, 1C_,FA
A

(6.54)

e_{dwh }r[k_o ]{O} where [k,,]= _C,, ]r[A, lcyo _tA
A

(6.55)

a{6wh}r[k,._wb}where [k,._]= _C_]V[A,.1C_Fd
A

(6.56)

coupled piezoelectric-structural stiffness

{dO}r[ko_ ]{w_ } where [ko_]= _[Cb ]r[p, M1B_ FA
A

(6.57)

{dw_}r[k_o]{O} where [k_o]= j'[B_]r[P:,]v[Ch]dd
A

(6.58)

{dw_}V[k_]{w_ } where [k,]= J_B_]r{_E;3_]-[Z])/A
d

(6.59)

mass matrices and load vectors from Eq. (6.41)

[_]= f[..,]' ;[u_]dA
A

(6.60)

H 1,[_o]--f[ w]p[H.]dA
,4

(6.61)

[_o_]--y[H..fp[H_]dA
:|

(6.62)

[too]= f[H,,o]rp[H,._]dA
,4

(6.63)

14





[m,,, ] = f([H,,]+[H,,])rp([H.]+[H,,])dA
,4

(6.64)

{p_(,))=f[Hwl'p(x,y,,)dA
.4

(6.65)

n 7{Po(t)} = _[ ,,o] p(x,y,t)dA (6.66)

{_°(,)}---fp_,dA (6.67)

Resulting in the following finite element equation of motion

o o [,,,,,,,],_,,,
o o o _IL%J

-0

0

+
0

0

0 0 0

[_o]+[_o],,[_o,,,]+[_o,,,],,[_._]+E_o+],,
[_,,,o]-[_,,,0],,[_,,,] [_,,,_]

+_

k,.h] 0

OOoo
0 0 0 (% j [pc (t).J

(6.68)

Through standard finite element assembly lead to

(6.69)

Separation of Eq.(6.69) produces two coupled equations of motions

[_.,+7{,_}+([_..]-k...,IK_]-,[K,..]){w}:{_..}_[,<..oIK,]-,{,>o} (6.70)

{_+): ko]-'{_o}-V,]-,[_o,.]{w} (6.71)

15





Eq.(6.70) describes the system with respect to the primary variable {W}, the structural

nodal dof, and the applied loads, indicated by the {P. }, [K,., IK¢ ]-' {Po}. Subsequently,

Eq.(6.71) defines the electrical dof as a function both the structural dof and the external

actuation voltage. Thus, finite element formulation supports simultaneous sensing and

actuation. However, if the piezoceramic patches are restricted to actuation or sensing

only, the fully coupled formulation is preserved.

7. Modal Formulation

The number of nodal degrees of freedom can be excessively large and thus

impede the controller design and computational efficiency. However, the modal

coordinate transformation can be utilized by considering the overall structural response

can be very well represented by a reduced number of normal modes. Thus, expressing

Eqs. (6.70) and (6.71) in the modal domain yields

[Vr]{_}+[c,]{q}+[x,]={F,w}-{r_} (7.1)

{wo}:[,:,]-,{_,0}-[K,]-'[_o..b,]{q}
where; [M.]: [g,]r[MI_'J.[Kr]=[_/]T([Kw]_[Kw¢)I_,]-'[Ko.]I_'].

(7.2)

T{Fr,_}=[_] {Pw},

and {F_0}=[_,I'[K..,IK,]'{¢}The damping matrix [crl will be determined

experimentally from the corresponding damping ratios of the individual modes measured.

The modal matrix, or eigenvectors, [_] represents a reduced set of the first ten normal

modes. Hence, the large number of finite element equations simply reduces to ten

equations in the modal domain.

16





8. Developmentof Actuator Location Optimization Process

rMl-lr lz[ K TK ]-_The piezoelectric modal actuator participation (PMAP) L I L_/J[ ,_1 _l {P_(t)}

indicates the contribution of the actuators to each of the modes. Exploiting the coupled

electrical-structural formulation and the modal domain properties the PMAP is evaluated

and ranked for desired acoustical modal contribution. Hence, the preferred actuator

location is determined. Results determined using a rectangular 24-dof plate finite

element with three piezoceramic patches are shown in Table 1. The patch numbering

refers to Figure 2, where patch 2 is indicated by a 2, and patches 8 and 9 are shown by 8

and 9 respectively. Note that patch 9 consist of nine finite elements and patches 2 and 8

each have one element. Furthermore, each acoustic radiating mode is indicated along

with the corresponding PMAP. The PMAP values indicated in Table 1 are normalized

indicating the maximum actuator performance for mode (1,3) with patch 9. The

piezoceramic stress values d31=ds2=O. 171e-9 was used and is representative of PZT-5A 5.

Patch 2

0.2151

0.0901

0.0562

Patch 8

0.2151

0.0901

0.0562

Patch 9

-0.8134

-1.0000

0.2868

Mode /(1,1)

(1,3)
(3,1)

-0.0592 -0.0592 0.0072 (5,1)
-0.0747 -0.0747 -0.2661 (3,3)
-0.1326 0.1326 -0.0000 (4,3)

Table 1 PAMP for 10"x14"x0.040" rectangular plate

17





nap2 =

1 1 1 1 1 1 1 2 1

1 1 1 1 1 1 1 1 l

1 1 1 9 9 9 1 1 1

1 1 1 9 9 9 1 1 1

1 l 1 9 9 9 1 1 1

1 1 1 l 1 1 1 1 1

1 8 1 1 1 1 1 1 1]

Figure 2 Vector representing typical piezoceramic sensor-actuator location map of three

patches. Key: (1) no piezoceramic present, (2) a single patch, (8) a single patch, and (9)

patch comprised of nine finite elements.

9. COUPLED ACOUSTICS USING RADIATION FILTERS

The structural velocity distribution may be constructed by superposition of a set of

independent acoustic modal velocities 6. The acoustic velocity modes correspond to the

acoustic pressure distributions of the radiated sound of the structure. Thus, a radiation

filter may be constructed by considering a radiation operator which represents

independent discrete acoustic structural radiators. The radiation operator is frequency

dependent and may be subjected to a singular value decomposition, which yields

interesting and useful results. Consider the following relationship of the total radiated

power of a vibrating structure

{P} = {v(jco)} H [R(jco)]{v(jco)} (9.1)

where {v(jco)} is a nxl vector of nodal velocities and [R(jco)] is a nxn radiation matrix.

The radiation matrix is proportional to the radiation resistance with diagonal and off

diagonal elements corresponding to self and mutual radiation resistance respectively.

Thus, a vibrating structure represented by n discrete independent acoustic point sources

or radiators represented by the following radiation matrix

18





(0 2
JR]= p,A'-

4_c

I sin(kr'2) ... sin(kr,,,)-

kr,: /%
sin(kr2, ) sin(krz3 )

!
krzl kr23

sin( ,) sin(k,:o_,)
• "" [

(9.2)

where co is the circular frequency, po is the density of air, A is the elemental area of the

corresponding radiator, c the speed of sound in air, k the wave number (ca/c), and rpq is

the distance between the pth and qth velocity location• Singular value decomposition of

the radiation matrix yields dominant acoustic radiation modes for each frequency• Thus

[ROco)]= [,,][z][u]"

where [u]=[{u}, {u}2 ...

acoustic radiation modes at

(9.3)

{u}.] is a nxn matrix whose column represent normalized

cop and [Z] is a nxn matrix of singular values. The

magnitude of the qth singular value indicates the relative importance of the corresponding

acoustic radiation mode. The singular values, as a function of frequency, represent the

dominant coupled acoustic modes, which provides guidance for developing a noise

control strategy• The associated normalized singular vectors obtained from the singular

value decomposition represent the contributing acoustic radiation mode. Figure 4 shows

the dominate acoustic radiation modes determined by evaluating the radiation matrix

singular values. Furthermore, Figure 5 presents the dominant corresponding acoustical

SVD radiation modes.
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10. Control Strategy

The objective of this research emphasizes determining the preferred placement of

piezoceramic sensors and actuators locations to minimizing the structure-borne radiated

noise of a cylindrical shell, to this end _ and LQG 7 control strategies will be employed.

The _ and LQG has been well researched and applied to laboratory experiments.

Although it may not represent the best practical control approach much data has been

published and will provide guidance. The state space approach is achievable by

considering the following fully coupled equations of motion

={_..{,)}-[Kw,][K,]-'{¢_,}}
(10.1)

Using a modal transformation results in the following set of uncoupled modal equations

, L
q,. + 2_,O)rOr +o)rqr =-- (10.2)

m r

Where the modal mass and stiffness are obtained from

{g}_'([M],[K]){p'}, =(mr,k,)where [KI=I_K,I-[K.,#][K¢]-'[K#v]-[Kv¢_ (10.3)

and

j.: {_,},.({P.(,)}-[K,.,][xo]-,{eoo)}) (10.4)

The following state space equations for LQG can be utilized

{2(,)} = [A]{x(t)} + [B, ]{u(t)} + [B,v ]{w(t)} (10.5)
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{y(t)I:[C]{x(t)}+{v(t)}, {x} : {q c)}"

where the following state space transformation was applied to the finite element coupled

equations of motion

fll 1m -i[ r] [c_

r [0] ]][B"]=[JIM,l-'C_I_[x,,,0Ix,]-'

tcl=[[x,]-'[x,w]t4I0]]

(10.6)

Evaluation of the system corresponding to the previous piezoceramic patches was

conducted by observing the open loop impulse response as shown in Figure 7. Each

patch is shown in Figure 2 and designated by 2,8, and 9. Again, the data represents a

structure modeled using rectangular plate elements modified to include the couple

electrical-structural formulation.
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